LOCATE Project at WCRR 2022, Birmingham, 6 – 10 June 2022

Published by Christine Hassoun on

The World Congress on Railway Research (WCRR) is the world’s largest international congress on railway research, founded by SNCF (France), DB AG (Germany), Trenitalia (Italy), RTRI (Japan), RSSB (UK), TTCI (USA) and UIC (France). WCRR was first held in 1994, hosted by SNCF, and the coming edition of WCRR will be held in Birmingham, UK, from 6 to 10 June 2022.

For more info and registration to WCRR click HERE.

LOCATE partners have submitted a paper entitled: “A Framework for Locomotive Bogie Condition-based Maintenance (LOCATE)”. The paper will be presented on Day 2 in a session called “Condition based maintenance” (Topic: Reliable and easy to maintain moving assets).


The freight industry is under increasing pressure to reduce costs and improve the reliability of its services. Therefore, the development of intelligent tools and methods for predictive maintenance are needed to optimise the availability of rolling stock, improve the quality of service, and reduce maintenance costs. The framework developed during the LOCATE project aims to address some of these challenges by improving the conditional maintenance of a locomotive bogie (and associated components/subsystems), as one of the main drivers for current maintenance costs of a locomotive is avoiding unnecessary maintenance actions by using predictive maintenance. Several technical challenges also exist which the project has had to address, these include: development of the predictive condition-based maintenance (CBM) framework; statistical degradation modelling of critical failure mechanisms associated with the main components of the locomotive bogie and estimation of hazard rates; development of a mixed-Integer Linear Programming (MILP) approach to tackle the maintenance scheduling problem; development of ‘digital twins’ for appropriate bogie components; specification of a monitoring system with the capability of providing the necessary information to detect changes in component performance and implementing a CBM framework on an aging fleet of freight locomotives.

This project has received funding from the Shift2Rail JU under the European Union’s Horizon 2020 research and innovation programme, under Grant Agreement 881805.